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I. Introduction 

 

The theory of frequency-independent (FI) antennas has not been rigorously developed. 

The recent article by Mushiake [1] correctly pointed out that “the origin of the broadband 

characteristics of those antennas is in their shapes derived from the self-complementary antennas, 

rather than their log-periodic shapes.” A recent symposium paper by this author [2] pointed out 

the shortcomings of existing theories on FI antennas, and gave a brief overview on the physical 

foundation of a class of FI antenna, the spiral-mode microstrip antennas. The approach was based 

on the traveling-wave (TW) antenna concept, which had been initially formulated in an earlier 

paper [3]. 

Specifically, fundamental elements are missing in existing theories on FI antennas. The 

only concrete element of the existing theory in the literature appears to be the real constant 

impedance for self-complementary antennas. Yet even this theory is not adequate for real-world 

FI antennas due to its assumption of infinite dimensions for the antenna. Theories based on the 

log-periodic or equiangular features, though intuitively plausible, do not add much useful insights 

into the design of FI antennas and are sometimes misleading. For example, speculative and 

misleading remarks were made in applying existing theories to the log and Archimedean spiral 

antennas, culminating in the statement that “the Archimedean spiral is by far the most popular of 

the two types of spirals mostly because the government funding of R&D programs was 

concentrated on the Archimedean spirals” [4]. 

This paper presents a TW theory for practical FI antennas as well as an asymptotic 

solution by the method of stationary phase, which can be applied to the design of real-world FI 

antennas in a simple and practical manner. Although the detailed analysis here is on two-arm 

spiral antennas fed with a 180o balun (mode-1 excitation) [3], the theory and technique are 

applicable to other planar FI antennas and for other modes. For example, the application to an FI 

omnidirectional mode-0 spiral-mode microstrip antenna [3] will be discussed in a separate paper 

[5]. 

 

II. Formulation of Planar FI Antennas as a TW Antenna 

 

The FI antenna under consideration is depicted in Fig. 1, a planar TW antenna with a 

backing ground plane. The use of spherical, cylindrical and rectangular systems with (r, θ, φ ), (ρ, 
φ, z) and (x, y, z) coordinates, respectively, is implicit, with the z-axis being normal to the ground 

plane. Without loss of generality, and in view of the reciprocity theorem, we consider only the 

transmit case.  
It is assumed here that a TW wave has been successfully launched ― by having a self-

complementary planar structure S or by some other means yet to be discovered. Under this 

assumption one merely has to treat it as a radiation problem with equivalent surface currents that 

can be readily derived from a simple TW theory in closed form since the source and fields are 

sufficiently decoupled. This approach enables us to circumvent the mathematical complexities 

associated with these problems, which are generally formulated by quasi-Green’s-functions using 

Sommerfeld integrals in the spectral domain [6].  Approximate antenna properties, including gain 

pattern and impedance, can be obtained under the assumption of TW wave as depicted in Fig. 1. 



 

 
Figure 1.  The radiation and radiation zone of a TW antenna. 

 
As a result of the extensive research in planar antennas such as the microstrip antennas, 

simple formulations easy to evaluate and directly relating radiation to source have been 

established. Under the assumption of the TW antenna model in Fig. 1, radiation properties can be 

evaluated and interpreted by the following representation for the electric field E at r in the far-

field [6, p.129 and Chapter 8]. 
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where r and r' are field and source position vectors, respectively; and the symbol “ˆ” over a 
variable signifies a unit vector.  

The equivalent electric current J consists of only θ and φ components perpendicular to 

the field vector r.  Thus Jθ = Jρ in polar coordinates on S. The planar surface of the antenna, S, is 

initially assumed to be infinite. It will be shown in the next section that, in a properly designed FI 

antenna, radiation takes place efficiently in a narrow circumferential radiation zone ∆S. As a 

result, by the method of stationary phase, the domain of the integral can be effectively reduced 

from S to ∆S.  Physically, this allows truncation of the antenna to practical dimensions only 

slightly larger than those prescribed by the radiation zone. 
 

III. Asymptotic Solution by the Principle of Stationary Phase 

 

Let I denote the integrand of Eq. (1) for either θ or φ component, we have 
 

I = J exp(jψJ + r′•rjkˆ ) = J exp(jψJ + ρ'r̂jk • )   (2) 
 

where ψJ and J denote, respectively, the phase and amplitude of either the θ or the φ component 

of the surface current J, which now has only ρ and φ components. A two-arm mode-1 spiral 

antenna, or other planar FI 2-arm antennas, is assumed here. 
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 To achieve stationary phase in the circumferential radiation zone ∆S, ψJ must be 

stationary versus ρ with respect to the adjacent arms, the nearest being the arm of the other spiral, 

and the next one being that of the same spiral. Since on and within a spiral arm the phase is 

essentially constant with respect to ρρρρ, a stationary phase versus ρρρρ between adjacent spiral 

arms can only be realized if the phase between them is 2nπ, where n = 0, 1, 2,… but 

realistically 1.  This condition can be met if the currents in 4 adjacent spiral arms, 2 on 

either side, including both spirals, are phase stationary in the radiation zone.  

With the two spirals fed 180o apart, phase stationary dictates that:  (1) The radiation zone 

be located at ρ = λ/(2π) (λ being the wavelength of the TW), and (2) the phase change to the 

adjacent arm (of the other spiral) equals π. Specifically, the change in phase, ∆ψJ, with respect to 

ρ, from (ρ, φ) to the adjacent arms must satisfy the following two conditions: 
 

 ∆ψJ = 2π between φ and (φ  + 2π) on the same spiral    (3a) 

 ∆ψJ = π at φ between adjacent arms (but of different spirals)  (3b) 

 

IV. Mode-1 Archimedean Spiral 

 

The center lines of a two-arm Archimedean spiral on the S plane are given by 
 

ρ1 = aφ,    φ ε [φ0, φt]    (4a) 

ρ2 = a(φ − π),   φ ε [φ0 + π, φt + π]   (4b) 
 

The two feed points are at x = ±d/2 (or φ = φ0 and φ0 + π) for arms #1 and #2, respectively.  φt and 

(φt + π) are the coordinates of the terminals of spiral #1 and spiral #2, respectively.  

The phase change ∆ψJ of the component current as it travels along a spiral arm is 

determined by the phase velocity of the TW and the distance traveled. The arc lengths L1 along 

spiral arm #1 from its feed point to (ρ, φ), and L2 along the adjacent spiral arm #2 from its feed 

point to (ρ2, φ) (note here by choice ρ2 > ρ), respectively, are given by 
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L1 and L2 are measured along the center line of each spiral arm.  For the Archimedean spiral 

antenna, there are two important relationships between adjacent (but different) arms of spirals 

 

∆ρ ≡  aφ − a(φ − π) = aπ     (6a) 

  ∆L ≡  (L1 − L2 ) ~ ρ∆ρ/a   as |a| → 0  (6b) 
 

Therefore, conditions (3a) and (3b) are both satisfied at ρ = λ/(2π) as long as a is small. 

As a result, a mode-1 Archimedean spiral antenna with reasonably tight winding can be easily 

truncated. And its radiation properties can be obtained by using the method of stationary phase 

with the domain of integration, S, in Eq. (1) replaced by an appropriately chosen radiation zone, 

∆S, which is the circumferential area having about 5 adjacent spiral arms centered at ρ.  
 

V. Mode-1 Log Spiral 

 

For a log spiral antenna on the S plane, the center lines of the two spirals are given by 
 

ρ1 = exp(aφ),   φ ε [φ0, φt]   (7a) 

ρ2 = exp[a(φ − π)],  φ ε [φ0 + π, φt + π]  (7b) 
 



The two feed points are at x = ±d/2, or φ = φ0 and φ0 + π, for arms #1 and #2. The arc 

lengths L1 along spiral arm #1 from its feed point to (ρ, φ), and L2 along the adjacent spiral arm #2 

from its feed point to (ρ2, φ) (note here ρ2 > ρ by choice), respectively, are given by 
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Thus, 
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Condition (3a) can be satisfied at ρ = λ/(2π) if |a| → 0. However, condition (3b) dictates 

that a not only be small in magnitude but also satisfy  
   

  ∆L = λ/2  at ρ = λ/(2π)     (10) 
 

The requirement of Eq. (10) adds considerable difficulties to the design of log spiral 

antennas that must tradeoff between performance requirements and size truncation. This is a 

problem not encountered in the Archimedean spiral antenna. 

 

VI. Conclusions 

 

The theory presented here has been found to be consistent with experimental data, with 

better agreement than some results in the literature obtained by brute-force numerical 

computation. More importantly, the technique is useful for design and synthesis of FI antennas 

because of its simplicity and its direct and close relevance to the physical parameters and 

performance of the FI antenna. The advantage of the Archimedean spiral antenna over the log 

spiral antenna, contrary to the observation in [4] and others in the literature, is pointed out and 

demonstrated based on this theory. 
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