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I. Introduction 

There is a growing interest in ultra-

wideband (UWB) antennas due to expanding 

applications in wireless communications, 

networking, detection, sensing, etc.  Although 

UWB is defined by IEEE as having a fractional 

bandwidth wider than 20%, to many UWB 

means “DC to daylight.” In this context the 

frequency-independent (FI) traveling-wave 

(TW) antenna is an ideal candidate. For many 

practical applications the antenna must have an 

omnidirectional pattern, and be planar in shape 

with low-profile and platform-conformable 

features. 

Recently, such an antenna with a 10:1 gain 

bandwidth (1-10 GHz) was reported [1]. It was 

a mode-0 SMM (spiral-mode microstrip) 

antenna 5.7-inch in diameter and 1.06-inch in 

height [2].  The general theory for this antenna 

as a TW antenna has been developed, and its 

solution by the method of stationary phase 

discussed in [3, 4]. This paper presents details 

on this theory for the omnidirectional type (the 

mode-0).  

 

II. Formulation of a Planar  

FI Omnidirectional TW Antenna 

The new class of FI omnidirectional TW 

antenna is depicted in Fig. 1.  

 

 

 

 

 

 

 

 

 

Figure 1. Mode-0 SMM antenna in transmit 

operation. 

The planar broadband TW surface S can be 

a multiarm spiral, and is of a finite and 

preferably small diameter. The ground plane 

also has a finite diameter dictated by the 

mounting platform. Both planar structures are 

conformal to the surface of the platform. The use 

of spherical, cylindrical and rectangular systems 

with (r, θ, φ ), (ρ, φ, z) and (x, y, z) coordinates, 
respectively, is implicit, with the z-axis being 

normal to the ground plane.  

Without loss of generality, and in light of the 

reciprocity theorem, we consider only the 

transmit case. It is assumed that a TW wave, 

specifically a mode-0 SMM wave [2], has been 

successfully launched. The mode-0 SMM wave 

corresponds to the case with spiral mode number 

n = 0, in which all the spiral arms are excited in 

equal amplitude and phase.  It is assumed that a 

traveling wave is largely supported and confined 

between the planar broadband structure and the 

ground plane.  

The far-zone radiation can be readily derived 

from a simple TW theory in closed form since the 

source and fields are sufficiently decoupled. We 

will formulate the problem in terms of a magnetic 

current M over the nonconducting part of the 

antenna surface, S, which is the slot region, 

instead of an equivalent electrical current for 

other FI antennas of non-zero modes [4]. 

By the image theory, the magnetic field in the 

far zone due to M with the conducting surface 

removed is 
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where k = 2π/λ, λ is the wavelength of the TW, 

and η is the free-space wave impedance equal to 

oo / εµ  or 120π. The primed and unprimed 

position vectors and coordinates refer to source 

and field points, respectively. The equivalent 

magnetic current M is given by 

EM ×−= ẑ          over the slot region r’     (2) 

The integral in Eq. (1) can be evaluated as a 

Riemann-Stieltjes integral by noting that 
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where f denotes an arbitrary but integrable 

function, and we define 
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Sℓ in Eq. (4) is proportional to the far-zone 

radiated field of the well-known thin circular 

annular slot with uniform aperture excitation. 

This is both physically and mathematically 

significant, and we will take advantage of this 

relevance by examining the annular slot first. 

 

III. The Annular Slot Antenna as a Building 

Block 

Fig. 2 depicts a thin circular annular slot on 

a ground plane in the x-y plane, which is a 

building block of this theory. The thin circular 

slot has a mean radius a, excited by a uniform 

radial electric field parallel to ρ, with a 

resulting voltage V across the slot aperture.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Fig. 2. A thin annular slot on x-y plane. 

 

It can be shown that the far-zone radiation 

of this annular slot is fully represented by a 

magnetic field having only a φ component as 

follows: 
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The integral in Eq. (5) can be evaluated 

exactly as 
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where J1 denotes a Bessel function of the first 

kind of order 1. For a small slot (a ≤ λ/(2π)), we 
have 
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   as a → 0 

where A = πa2.  
To our knowledge these equations have 

appeared only in [5, 6], but with some errors. We 

believe references 5 and 6 are in error since Eq. 

(6) can be verified independently by invoking 

duality from the case of an electric circular loop 

antenna based on Maxwell equations having full-

fledged presentation of magnetic sources [7]. 

Other errors in annular slots in the 1st edition 

of the widely used antenna handbook [5] include 

Figs. 8-11 (b) and 27-43, which were largely 

eliminated in its 3rd edition. Corrections for these 

are also long overdue. 

An electrically small annular slot has a 

desired elevation pattern, sin θ, according to Eq. 

(7). However, the beam becomes tilted and 

narrowed, with additional beams emerging, as the 

frequency increases. Thus, its usefulness as a 

wideband omnidirectional antenna is limited.  

Fig. 3 shows the calculated angle of the 

elevation beam peak as a function of ka using Eq. 

(6). (Only two beams are included in Fig. 3.) As 

can be seen, for annular slots of a small diameter 

a, the pattern is simply sin θ as given by Eq. (7), 

peaked at θ = 90o, which is ideal for 

omnidirectional coverage.  

Note that around ka = 2 the first beam tilts up 

rapidly as ka increases. It is also worth 

mentioning that omnidirectional antennas, such as 

a monopole or annular slots, mounted on a finite 

ground plane of radius b have an increasing beam 

tilt in elevation as kb decreases. These two beam 

tilt mechanisms were misleadingly presented in 

Fig. 27-43 in the 1st ed. of [5]. 
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Fig. 3. Beam peaks versus ka for an annular slot. 
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IV. The TW Antenna as an Array of 

Annular Slots Plus Edge Slot 

Based on the discussions above, the far-

zone radiated fields of the planar FI 

omnidirectional antenna in Fig. 1 is given by 
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where ψℓ and Vℓ denote, respectively, the phase 
and amplitude of the voltage of the equivalent 

annular slot element ℓ.  Thus the far-zone 

radiation of the TW surface S can be fully 

represented by its magnetic field, which only 

consists of a φ component, and which is the 

superposition of the fields from the concentric 

annular slots of varying amplitude and phase, 

Vℓ and ψℓ, respectively, along ρ. 
Therefore, the far-zone radiated field of this 

TW antenna is the superposition of the fields 

due to the elements of a concentric array of 

equally spaced annular slots, plus a circular 

edge slot at the rim of the spiral. 

 

V. Radiation Zones and Radiated Fields 

Consider the case in which the planar 

structure in Fig. 1 is a self-complementary 2-

arm Archimedean spiral. The center lines of a 

two-arm Archimedean spiral on the S plane are  

ρ1 = bφ     φ ε [φ0, φt] (9a) 

ρ2 = b(φ − π)      φ ε [φ0 + π, φt + π]   (9b) 

The two feed points are at φ = φ0 and (φ0 + π) 
for arms #1 and #2, respectively, with equal in-

phase voltages V.  

The arc lengths L1 along spiral arm #1 from 

its feed point to (ρ, φ), and L2 along the 
adjacent spiral arm #2 from its feed point to 

(ρ2, φ), respectively, are given by  
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Also, between adjacent arms, 

 ∆ρ ≡  bφ − b(φ − π/2) = bπ/2      (11a) 

 ∆L ≡  (L1 − L2 ) ~ ρ∆ρ/b ~ πρ   as |a| → 0  (11b) 

The phase change ∆ψJ of the TW fields 

between adjacent spiral arms is given by 

∆ψJ = (2π/λ)∆L    (12) 

The series in Eq. (8) can be approximately 

evaluated by including only a few terms that have 

significant in-phase contribution. Physically, this 

means including only slots at the “radiation 

zones.” For a 2-arm spiral, the radiation zones are 

at circumferences where ∆ψJ = π/2 between 

adjacent arms, so that an equivalent annular slot is 

formed over three adjacent arms (or two adjacent 

annular slots), with a resulting voltage V. For a 4-

arm spiral, at radiation zones ∆ψJ = π/4 between 

five adjacent arms or four adjacent slots. Thus, 

radiation zones are at radial distances ρr given by  

   ρr = λ/(4π) + nλ/π for 2-arm spiral       (13a) 

   ρr = λ/(8π) + nλ/π for 4-arm spiral       (13b) 

where n = 0, 1, 2, 3…, and the edge of the spiral. 

Fig. 4 shows measured elevation patterns for 

a 4-arm mode-0 SMM antenna of Fig. 1, 5.7-inch 

in diameter and 1.06-inch in height operating over 

0.5-10 GHz, described in [1].  As can be seen, the 

patterns are consistent with Eq. (8) and Fig. 3 

with regard to the beam tilt and beam peaks as a/λ 
increases from 0.12 to 2.42 (or ka from 0.75 to 

15.08). For example, at 2.5 GHz, ka = 3.75, the 

beam peaked at θ ~ 42o can be calculated from 

two terms in Eq. (8)―the fields from two 

radiation zones n = 1, 2 in Eq. (13b). 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Measured elevation patterns. 

0.5 GHz 10.0 GHz 

z (Zenith) 

θ 

2.5 GHz 

5 dB/Div 



VI. Impedance Matching 

Under the condition that higher-order 

modes are suppressed, the planar TW surface S 

can be considered a loaded surface consisting 

of both a reactive component and a resistive 

component, the latter accounting for possible 

radiation through the nonconducting (slot) 

region. At the edge of the surface S, there is a 

circular slot from which the residual power is 

radiated.  

In the region where the planar surface 

structure S is a solid conductor, the TW antenna 

can be viewed as a circular radial waveguide of 

height h, and its characteristic impedance Z00 at 

ρ for the m = n = 0 mode is given by 

Z00 = 60h/ρ   (14) 

Note that Z00 changes with ρ, the distance from 

the center of the radial waveguide, but is 

independent of frequency.  

In regions where the surface S is self-

complementary, half metallic and half slot, its 

characteristic impedance Zc can be obtained, by 

invoking the principle of superposition and 

duality in the context of Maxwell equations 

formulated with full-fledged presentation of 

magnetic sources [7], as 

 Zc ~  2 Z00   (15) 

Each annular slot can be represented by a 

radiation resistance plus a small capacitance. 

Various techniques are available to suppress 

higher-order modes to ensure that the simple 

transmission line model is an adequate 

representation for the radial waveguide with 

generally reactive TW surface S. 

Eqs. (14) and (15) are consistent with our 

experimental observations. Indeed, ultra-

wideband impedance matching over 10:1 

bandwidth has been demonstrated, with SWR < 

1.3 mostly, rising to ~ 2.0 at high and low 

frequencies, over a 10:1 bandwidth (at 1-10 

GHz and other frequency ranges) with 

breadboard and brassboard models. Some of 

the results have been presented in [1]. 

It is worth commenting that the self-

complementary geometry of the TW surface S, 

the frequency-independent impedance of Z00, 

and the full-fledged duality formulation of the 

Maxwell equations, all contributed to the 

insight that ultra-wideband impedance 

matching for the planar FI TW antenna in Fig. 

1 is feasible. 

 

 

VII. Conclusions 

The theory for a new class of planar 

frequency-independent omnidirectional antenna 

has been developed and found to be consistent 

with measured data, with better agreement than 

many of those obtained by brute-force numerical 

computation. More importantly, the theory is 

useful for design and synthesis because of its 

simple closed-form solution, which has direct and 

close relevance to the physical parameters and 

performance of the planar frequency-independent 

omnidirectional antenna. A building block for the 

theory is that for the annular slots, which has 

some errors in the literature. These errors in the 

equations and figures were also discussed and 

corrected in this paper. 
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